Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng-Ling Yang and Gong-Chun Li*

Department of Chemistry, Xuchang University, Xuchang Henan Province 461000, People's Republic of China

Correspondence e-mail:
ligongchun@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.104$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,3-Bis(4-chlorobenzyl)pyrimidine-2,4(1H,3H)-dione

In the crystal structure of the title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, there are weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions. In the title molecule, the plane of the pyrimidine ring makes angles of 71.6 (1) and 71.72 (9) ${ }^{\circ}$ with the planes of the two benzene rings.

Comment

Pyrimidine derivatives are very important molecules in biology and have many applications as pesticides and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT (azidothymidine), which is the most widely used anti-AIDS drug (Gilchrist, 1997).

(I)

In the quest for further biologically active pyrimidine compounds, the title compound, (I), has been synthesized and its crystal structure determined (Fig. 1). In (I), the pyrimidine ring ($\mathrm{C} 8-\mathrm{C} 11 / \mathrm{N} 1 / \mathrm{N} 2$) is almost planar, with a maximum deviation of 0.033 (2) \AA for C8. The dihedral angles formed by the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 13-\mathrm{C} 18$ benzene rings with the pyrimidine ring are 71.6 (1) and 71.72 (9) ${ }^{\circ}$, respectively. The dihedral angle between the two benzene rings is $82.0(1)^{\circ}$. In the crystal structure, there are weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbond interactions (Table 1).

Experimental

Uracil (5 mmol) and anhydrous potassium carbonate (6 mmol) were mixed in dimethylformamide (20 ml). A solution of 4-chlorobenzyl chloride ($0.81 \mathrm{~g}, 5 \mathrm{mmol}$) in acetone (10 ml) was then added dropwise, with stirring, at room temperature, and the mixture was stirred for another 10 h and then refluxed for 4 h . The solvent was evaporated in vacuo and the residue was washed with water. The resulting white precipitate was filtered off and purified by column chromatography on silica gel (petroleum ether-ethyl acetate 2:1). The title compound was recrystallized from ethanol and single crystals were obtained.

Received 30 June 2006 Accepted 10 July 2006

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=361.21$
Monoclinic, C2/c
$a=28.118$ (9) A
$b=8.941$ (3) A
$c=14.291$ (5) \AA
$\beta=108.047$ (5) ${ }^{\circ}$
$V=3416.0(19) \AA^{3}$

$Z=8$

$D_{x}=1.405 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.30 \times 0.26 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$\quad T_{\min }=0.891, T_{\max }=0.926$

9294 measured reflections 3476 independent reflections 2133 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$ $\theta_{\text {max }}=26.4^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.104$
$S=1.00$
3476 reflections
217 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	0.97	2.36	$2.725(3)$	101
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2$	0.97	2.39	$2.736(3)$	100
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.97	2.49	$3.388(3)$	154
$\mathrm{C}^{\text {17 }} 17 \cdots \mathrm{H}^{\mathrm{ii}}$	0.93	2.38	$3.267(3)$	160

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1, y+1,-z+\frac{1}{2}$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the Program for New Century Excellent Talents in Universities of Henan Province (No. 2005HANCET-17).

References

Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Figure 2
A view of the intermolecular $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 2$ hydrogen-bond interactions (dashed lines) in (I).

Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. \& Tecle, B. (1993). Brighton Crop Protection Conference - Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.
Maeno, S., Miura, I., Masuda, K. \& Nagata, T. (1990). Brighton Crop Protection Conference - Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

